MATHEMATICS: PAPER II

MARKING GUIDELINES
150 marks

These marking guidelines are prepared for use by examiners and sub-examiners, all of whom are required to attend a standardisation meeting to ensure that the guidelines are consistently interpreted and applied in the marking of candidates' scripts.

The IEB will not enter into any discussions or correspondence about any marking guidelines. It is acknowledged that there may be different views about some matters of emphasis or detail in the guidelines. It is also recognised that, without the benefit of attendance at a standardisation meeting, there may be different interpretations of the application of the marking guidelines.

SECTION A

QUESTION 1

(a) $m_{\mathrm{OB}}=\frac{3}{5}$
(b) $\quad m_{\mathrm{EC}}=-\frac{5}{3}$

$$
\begin{aligned}
&(-1)=-\frac{5}{3}(3)+c \\
& c=4 \\
& y=-\frac{5}{3} x+4 \\
& E(0 ; 4)
\end{aligned}
$$

(c) $\mathrm{EB}=\sqrt{(4-3)^{2}+(0-5)^{2}}$

$$
\mathrm{EB}=\sqrt{26} \text { or } 5,1
$$

(d) $-\frac{5}{3} x+4=\frac{3}{5} x$

$$
\begin{aligned}
& x=\frac{30}{17} \\
& y=\frac{3}{5}\left(\frac{30}{17}\right) \\
& y=\frac{18}{17}
\end{aligned}
$$

(e) (1) Area $\triangle E F C=\frac{1}{2} \times 5 \times 3=7,5$ units 2
(2) AreaOGCF $=7,5-\frac{1}{2} \times 4 \times \frac{30}{17}$

$$
\text { Area OGCF }=4 \text { units²}^{2}
$$

QUESTION 2

(a) Coordinates of $A(3 ; 2)$
x value of E is $3+2=5$
$\mathrm{E}(5 ; 2)$
(b) $x^{2}-16 x+64+y^{2}-2 y+1+63=+65$
$(x-8)^{2}+(y-1)^{2}=2$
$B(8 ; 1)$
(c) Radius of $\sqrt{2}$
$\mathrm{G}(5 ; 0)$
$G B=\sqrt{10}$
$\mathrm{G} \hat{F} \mathrm{~B}=90^{\circ}$ Tangent perpendicular to radius
$\mathrm{FG}=\sqrt{8}$ units or $2 \sqrt{2}$ units

QUESTION 3

(a) $\cos x=\frac{4}{5}$ method

$$
\begin{aligned}
& x=4 \\
& y=-3 \\
& r=5
\end{aligned}
$$

$3 \sin 2 x=6 \sin x \cos x$

$$
\begin{aligned}
& =6 \times \frac{-3}{5} \times \frac{4}{5} \\
& =\frac{-72}{25}
\end{aligned}
$$

(b) $7 \tan 2 x=1$

$$
\tan 2 x=\frac{1}{7}
$$

Reference angle: 8,1

$$
\begin{aligned}
2 x & =8,1^{\circ}+k \cdot 180^{\circ} \\
x & =4,1^{\circ}+k \cdot 90^{\circ}
\end{aligned}
$$

(c) (1) $\frac{\cos 2 \theta+1}{\cos \theta}+2 \tan \theta \cdot \sin \theta$

$$
\begin{aligned}
& =\frac{2 \cos ^{2} \theta-1+1}{\cos \theta}+\frac{2 \sin ^{2} \theta}{\cos \theta} \\
& =\frac{2 \cos ^{2} \theta+2 \sin ^{2} \theta}{\cos \theta} \\
& =\frac{2}{\cos \theta} \\
& \text { Therefore } A=2
\end{aligned}
$$

(2) $\cos \theta=0 \quad$ ALT: where $\tan \theta$ is undefined

$$
\begin{aligned}
& \theta=90^{\circ}+k .180^{\circ} \quad k \in Z \quad \text { OR } \\
& \theta=90^{\circ}+k .360^{\circ} \text { or } \theta=270^{\circ}+k .360^{\circ}
\end{aligned}
$$

QUESTION 4

(a) Intercepts with axes

End-points

Turning points

Shape

(b) Line through -2

Points of intersection are indicated or correct values read off graph

(c) $k<-3$ or $k>3$

QUESTION 5

(a) RTP: BÔA $=2 \times$ BĈA

Construction CO to K or on the diagram

$\hat{\mathrm{O}}_{1}=\hat{\mathrm{C}}_{1}+\hat{\mathrm{B}} \quad$ Exterior angle of a triangle
$\hat{\mathrm{C}}_{1}=\hat{\mathrm{B}} \quad$ Radii; isos triangle
$\hat{\mathrm{O}}_{1}=2 \hat{\mathrm{C}}_{1}$
Similarly
$\hat{\mathrm{O}}_{2}=2 \hat{\mathrm{C}}_{2}$
$\hat{\mathrm{O}}_{1}+\hat{\mathrm{O}}_{2}=2\left(\hat{\mathrm{C}}_{1}+\hat{\mathrm{C}}_{2}\right)$
(b) $\quad \hat{B}=60^{\circ} \quad$ Ext angle of cyclic quad
$\hat{A}=120^{\circ} \quad$ Angle at centre $=2 x$ angle at circumference
$\hat{\mathrm{C}}_{2}=30^{\circ} \quad$ (Radii; Isos triangle)
(c) $\hat{\mathrm{C}}=30^{\circ} \quad$ Tan chord theorem
$\hat{E}=60^{\circ} \quad$ Equilateral triangle
$\hat{\mathrm{G}}=90^{\circ} \quad$ Angles in a triangle
Therefore
CE is a diameter (Converse: Angles in a semi-circle)

QUESTION 6

(a) $A=430$
$B=200$
$C=800$
$D=1000$
(b) (1) LV and HV

Quartile 1 Median
Quartile 3

(2) No, as the distance from Q1 to the median is very similar to the distance from Q2 to Q3. Diagram is symmetrical.
(3) The mean will get pulled to the left of the current mean. Alt: Data will now be slightly skewed to the right or positively skewed.

SECTION B

QUESTION 7

(a) Stay the same the new height is the same as the mean.
(b) Decrease. The sum of the squares of the differences stays the same but it is divided by one more.
(c) The correlation coefficient will decrease. The point is well below the line of best fit.
Alt: Since no power from the grid is used this will have no influence on the correlation between the height of buildings and the power they use.

QUESTION 8

$$
\begin{aligned}
& \frac{x}{1,9}=\frac{5,4}{x} \quad \text { Prop theorem } \\
& x^{2}=1,9 \times 5,4 \\
& x=3,2 \\
&(3,2)^{2}=4^{2}+4^{2}-2(4)(4) \cos \hat{\mathrm{G}} \\
& \hat{\mathrm{G}}=47,2^{\circ}
\end{aligned}
$$

QUESTION 9

(a) $\quad \mathrm{DCE}=\mathrm{HÊ} \quad$ Alternate angles DC II EH
$C D=C E \quad$ Tangents drawn from common point Therefore $\hat{D}=D \hat{E} C$

$$
\mathrm{EH}=\mathrm{El} \text { Radii }
$$

Therefore $\hat{\mathrm{H}}=\hat{\imath}$
Hence
\triangle DCE III $\triangle \mathrm{HEI}$ (A.A.A)
(b) $\mathrm{FG} E=90^{\circ}$ Tangent perpendicular to radius
$D G=G E \quad$ Line from centre perpendicular to the chord
(c) $\frac{\mathrm{DC}}{\mathrm{HE}}=\frac{\mathrm{DE}}{\mathrm{HI}} \quad$ (Prop. Theorem)

$$
\begin{array}{ll}
\mathrm{GE}=\mathrm{EH} & \text { Radii } \\
\mathrm{DE}=2 \mathrm{HE} &
\end{array}
$$

$$
\frac{\mathrm{DC}}{\mathrm{HE}}=\frac{2 \mathrm{HE}}{\mathrm{HI}}
$$

$$
2 \mathrm{HE}^{2}=\mathrm{DC} \times \mathrm{HI}
$$

QUESTION 10

(a) Construction CD
$B \hat{C} D=90^{\circ}$ Angle in semi-circle
$E \hat{C} D=x \quad$ Angles in same segment

Therefore

$$
\begin{aligned}
2 x+6^{\circ} & =90^{\circ}-x \\
3 x & =84^{\circ} \\
x & =28^{\circ}
\end{aligned}
$$

(b) KÂJ $=2 x$ Angle at centre $=2 x$ angle at circumference
$\mathrm{A} \hat{E} G=55^{\circ}-x \quad$ Tan chord theorem
AGEE $=180^{\circ}-\left(2 x+55^{\circ}-x\right)$
AĜE $=125^{\circ}-x$
But
$125^{\circ}-x+55^{\circ}+x=180^{\circ}$
Therefore
ABEG is a cyclic quad (Converse: Opp angles of cyclic quad are supplementary)

QUESTION 11

(a) $\quad m_{\mathrm{CD}}=\frac{4-3}{2-0}=\frac{1}{2}$
$(4)=-2(2)+c$

$$
\begin{aligned}
& c=8 \\
& y=-2 x+8
\end{aligned}
$$

Midpoint of JK $\left(\frac{9}{2} ; \frac{7}{2}\right)$
Gradient of perpendicular bisector is 1
$y=x-1$

$$
\begin{aligned}
x-1 & =-2 x+8 \\
x & =3 \\
y & =2
\end{aligned}
$$

(b) $\quad m_{\mathrm{AG}}=\frac{2-(-2)}{3-10} \therefore \tan \theta=\frac{4}{-7}$

Angle of inclination $=150,3^{\circ}$

$$
m_{\mathrm{FG}}=\frac{1-(-2)}{8-10} \quad \therefore \tan \alpha=\frac{3}{-2}
$$

Angle of inclination $=123,7^{\circ}$
FĜA $=26,6^{\circ}$
Therefore
AFGO is a cyclic quadrilateral (Converse: Angles in same segment)

QUESTION 12

(a) $\quad \triangle A D B$ is an isosceles triangle so $A B$ is bisected by the perpendicular from D.

Let perpendicular from D meet $A B$ at F.
$A F=F B=3$ units
$F D=4$ units (Pythagoras)
(b) $\frac{\mathrm{BC}}{\sin 36^{\circ}}=\frac{6}{\sin 43^{\circ}}$
$B C=5,17$ units
$\mathrm{FC}^{2}=(3)^{2}+(5,17)^{2}-2(3)(5,17) \cos 101^{\circ}$
$\mathrm{FC}=6,4535$
$D C=7,59$ units

(c) $\quad \sin D \widehat{B} A=\frac{4}{5}$
$D \widehat{B A}=53,1^{\circ}$
$A \hat{B C}=101^{\circ}$
$D C^{2}=(5)^{2}+(5,2)^{2}-2(5)(5,2) \cos 154,1^{\circ}$
$D C=9,9$ units

