# sapapers.co.za



NATIONAL SENIOR CERTIFICATE EXAMINATION MAY 2023

#### MATHEMATICS: PAPER II

#### MARKING GUIDELINES

Time: 3 hours

150 marks

These marking guidelines are prepared for use by examiners and sub-examiners, all of whom are required to attend a standardisation meeting to ensure that the guidelines are consistently interpreted and applied in the marking of candidates' scripts.

The IEB will not enter into any discussions or correspondence about any marking guidelines. It is acknowledged that there may be different views about some matters of emphasis or detail in the guidelines. It is also recognised that, without the benefit of attendance at a standardisation meeting, there may be different interpretations of the application of the marking guidelines.

## NOTE:

- If a candidate answers a question more than once, only mark the FIRST attempt.
- Consistent Accuracy applies in all aspects of the marking memorandum.

#### **SECTION A**

| (a)    | A = 14,533                                            | A = 14,533                         |
|--------|-------------------------------------------------------|------------------------------------|
|        | <i>B</i> = 0,863                                      | <i>B</i> = 0,863                   |
|        | <i>y</i> = 14,533 + 0,863 <i>x</i>                    | <i>y</i> = 14,533 + 0,863 <i>x</i> |
| (b)(1) | <i>r</i> = 0,979                                      | <i>r</i> ≈ 1                       |
|        | <i>r</i> ≈ 1                                          |                                    |
| (b)(2) | There is a very strong positive correlation.          | strong                             |
|        |                                                       | positive correlation               |
|        |                                                       |                                    |
| (c)    | y = 14,533 + 0,863(70)                                | y = 14,533 + 0,863(70)             |
|        | <i>y</i> = 74,9                                       | <i>y</i> = 74,9                    |
|        |                                                       |                                    |
|        | Alternate:                                            |                                    |
|        | Using calculator: $y = 74,9$                          |                                    |
| (d)    | Interpolation usually results in a fairly reliable    | fairly reliable                    |
|        | prediction.                                           | interpolation                      |
|        | Alternates                                            |                                    |
|        | Alternate:                                            |                                    |
|        | $r \approx 1$ , hence strong correlation and reliable |                                    |
|        | prediction.                                           |                                    |
|        | Alternate:                                            |                                    |
|        | 70 is not an outlier, hence a reliable prediction.    |                                    |



| (a)    | $sin[(85^{\circ} + \theta) - (25^{\circ} + \theta)]$<br>sin(60^{\circ})<br>$= \frac{\sqrt{3}}{2}$                                                                                                                                              | $\sin[(85^\circ + \theta) - (25^\circ + \theta)] = \frac{\sqrt{3}}{2}$                                          |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| (b)    | $-\tan(\theta).\cos(\theta) + \frac{2\sin\theta.\cos\theta}{2\cos(\theta)}$ $-\frac{\sin\theta}{\cos\theta}.\cos\theta + \frac{2\sin\theta.\cos\theta}{2\cos\theta}$ $-\sin\theta + \sin\theta$ $= 0$                                          | $-\tan\theta$<br>$\cos\theta$<br>$2\sin\theta.\cos\theta$<br>$2\cos\theta$<br>$-\sin\theta + \sin\theta$<br>= 0 |
| (c)(1) | $y^2 = 1^2 - p^2$<br>= $\sqrt{1 - p^2}$                                                                                                                                                                                                        | $y^2 = 1^2 - p^2$<br>= $\sqrt{1 - p^2}$                                                                         |
| (c)(2) | $=2\cos^2 x - 1$ $=2p^2 - 1$                                                                                                                                                                                                                   | $=2\cos^2 x-1$ $=2p^2-1$                                                                                        |
| (d)    | $\frac{\sin(x-30^{\circ})}{\cos(x-30^{\circ})} = \frac{1}{2}$<br>$\tan(x-30^{\circ}) = \frac{1}{2}$<br>$x-30^{\circ} \approx 26, 6^{\circ} + k180^{\circ};  k \in \mathbb{Z}$<br>$x \approx 56, 6^{\circ} + k180^{\circ}  ;  k \in \mathbb{Z}$ | $ \tan(x-30^\circ) = \frac{1}{2} $ Ref angle: 26,6° $x \approx 56,6^\circ + k180^\circ; k \in Z$                |



| (a) | $\hat{A}_1 = A\hat{D}O$ (Radii/ $\angle$ s opp. = sides)                                           | $\hat{A}_1 = A\hat{D}O$                                                                              |
|-----|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|     | $\therefore \hat{A}_1 = \frac{180^\circ - 40^\circ}{2}  (\text{int. } \angle \text{s of } \Delta)$ | (Radii/∠s opp. = sides)                                                                              |
|     | $\therefore \hat{A}_1 = 70^{\circ}$                                                                | $\therefore A_1 = 70^\circ$ (int. $\angle$ s of $\Delta$ )                                           |
| (b) | $\hat{E} = 110^{\circ}$ (Opp. $\angle$ s of cyclic quad.)                                          | $\hat{E} = 110^{\circ}$<br>(Opp. $\angle$ s of cyclic quad.)                                         |
|     | Alternate                                                                                          |                                                                                                      |
|     | $\hat{O}_2 = 180^\circ - 40^\circ$ (Adj. $\angle$ s on str line)                                   | $\hat{O}_2 = 140^\circ$                                                                              |
|     | $\hat{O}_2 = 140^\circ$                                                                            | $\dot{\mathbf{C}}_2 = 70^{\circ}$                                                                    |
|     | $\therefore \hat{C}_2 = 70^\circ$ ( $\angle$ at centre $= 2 \times \angle$ at circumf.)            | $(\angle \text{ at centre } = 2 \times \angle \text{ at circumf.})$                                  |
|     | $\hat{E} = 110^{\circ}$ (Opp. $\angle$ s of cyclic guad.)                                          | E = 110°                                                                                             |
|     |                                                                                                    | (Opp. ∠s of cyclic quad.)                                                                            |
|     | Alternate:                                                                                         |                                                                                                      |
|     | Reflex. $DOB = (O_1 + 180^\circ)$ (adj. $\angle$ on str. line)<br>Reflex. $DOB = 220^\circ$        | Reflex. $DOB = 220^{\circ}$                                                                          |
|     | $\hat{E} = 110^{\circ}$ ( $\angle$ at centre = 2× $\angle$ at circumf.)                            | Ê = 110°                                                                                             |
|     |                                                                                                    | $(\angle \text{ at centre } = 2 \times \angle \text{ at circumf.})$                                  |
| (c) | $  \hat{C}_1 = 20^{\circ}  (\angle \text{ at centre } = 2 \times \angle \text{ at circumf.} ) $    | $ \hat{\hat{C}}_1 = 20^{\circ}  (\angle \text{ at centre } = 2 \times \angle \text{ at circumf.} ) $ |
|     | Alternate:                                                                                         |                                                                                                      |
|     | $\hat{\mathbf{C}}_1 + \hat{\mathbf{C}}_2 = 90^{\circ}$                                             |                                                                                                      |
|     | $(\angle$ in semi-circle)                                                                          |                                                                                                      |
|     | and $\therefore \hat{C}_2 = 70^\circ$ (proven)                                                     |                                                                                                      |
|     | $\therefore \hat{C}_1 = 20^{\circ}$                                                                |                                                                                                      |
| (d) | $\hat{B}_1 = 40^{\circ}$                                                                           | $\hat{B}_1 = 40^{\circ}$                                                                             |
|     | (corresp ∠s DO//EB)                                                                                | (corresp ∠s DO//EB)                                                                                  |

| (e) | AF = FE (line from midpoint // to one side)<br>DO $\perp$ AE (line from centre to midpoint of                        | AF = FE (line from midpoint // to one side)              |
|-----|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|     | chord)<br>In $\triangle AOF$ : sin 40° = $\frac{AF}{4\frac{1}{4}}$                                                   | DO ⊥ AE<br>(line from centre to midpoint of<br>chord)    |
|     | 2<br>AF ≈ 2,9 units<br>∴ FE ≈ 2,9 units                                                                              | In $\triangle AOF$ : sin 40° = $\frac{AF}{4\frac{1}{2}}$ |
|     | $\Delta E \sim 5.8$ upito                                                                                            | AF ≈ 2,9 units<br>∴ FE ≈ 2,9 units                       |
|     | Alternate:                                                                                                           | ∴ AE ≈ 5,8 units                                         |
|     | In In $\triangle ABE$ : $\hat{E} = 90^{\circ}$ ( $\angle$ in semi-circle)<br>Hence: $\sin 40^{\circ} = \frac{AE}{9}$ |                                                          |
|     | ∴ AE ≈ 5,8 units                                                                                                     |                                                          |

| (a) | $\hat{A} = x$<br>(tap/cbord theorem)                                                            | $\hat{A} = x$<br>(tap/cbord theorem)      |
|-----|-------------------------------------------------------------------------------------------------|-------------------------------------------|
| (b) | In $\triangle$ CBD and $\triangle$ ACD:<br>$\hat{B}_2 = 90^\circ$ (adj. $\angle$ s on str line) | $\hat{C}_2 = \hat{A}$ (tan/chord theorem) |
|     | $\hat{ACD} = 90^{\circ}$ (tan $\perp$ rad)                                                      | $\hat{D}$ is common                       |
|     | $\hat{C}_2 = \hat{A}$ (tan/chord theorem)                                                       | ∴∆CBD /// ∆ACD (∠∠∠)                      |
|     | Ď is common<br>∴ ΔCBD /// ΔACD (∠∠∠)                                                            |                                           |
| (c) | $\frac{CD}{BD} = \frac{AD}{CD}  (///\Delta s - side in prop)$                                   | $\frac{CD}{BD} = \frac{AD}{CD}$           |
|     | $CD^2 = 9 \times 4$                                                                             | (/// $\Delta$ s - side in prop)           |
|     | $\therefore$ CD = 6 units                                                                       | $CD^2 = 9 \times 4$                       |
|     |                                                                                                 | $\therefore CD = 6$                       |

| (a) | $\hat{B} = 90^{\circ} (\angle \text{ in semi } \odot)$                                                   | $\hat{B} = 90^{\circ} (\angle \text{ in semi } \odot)$     |
|-----|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
|     | $\hat{C}_1 = 45^\circ$ (given)                                                                           | $\therefore \hat{A}_1 = 180^\circ - (90^\circ + 45^\circ)$ |
|     | $\therefore \stackrel{\circ}{A}_1 = 180^\circ - (90^\circ + 45^\circ)$ (int. $\angle$ s of $\triangle$ ) | (int. $\angle$ s of $\Delta$ )                             |
|     | $\therefore \hat{A}_1 = 45^\circ$ (isosceles $\Delta$ / sides opp = $\angle$ s)                          | $\therefore \hat{A}_1 = 45^\circ$                          |
|     |                                                                                                          | (isos $\Delta$ / sides opp = $\angle$ s)                   |
| (b) | $\overset{\circ}{B}_2 = 90^\circ - 67,5^\circ \ (\angle \text{ in semi } \odot)$                         | $\hat{B}_2 = 90^\circ - 67,5^\circ$                        |
|     | $\hat{B}_2 = 22,5^{\circ}$                                                                               | (∠ in semi ⊙)                                              |
|     | $\therefore \hat{A}_2 = 22,5^\circ \ (\angle \text{ in same seg})$                                       | $\therefore \hat{A}_2 = 22,5^\circ$                        |
|     | $\hat{A}_1 = 45^\circ$ (shown)                                                                           | (∠ in same seg)                                            |
|     | $\therefore \hat{A}_1 = 2 \times \hat{A}_2$                                                              | $\hat{A}_1 = 45^\circ$ (shown)                             |

# **SECTION B**

| (a) | <b>Construction:</b> Join AO and BO<br>In $\triangle AOC$ and $\triangle BOC$<br>OC is a common side<br>AO = BO (radii)<br>$\hat{C}_1 = \hat{C}_2 = 90^\circ$ (given)<br>$\therefore \triangle AOC \equiv \triangle BOC$ (R;H;S)<br>Hence $AC = CB$                                                                                                                                                                          | Join AO and BO<br>OC is a common side<br>AO = BO (radii)<br>$\hat{C}_1 = \hat{C}_2 = 90^\circ$ (given)<br>$\therefore \Delta AOC \equiv \Delta BOC$ (R;H;S) |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b) | Let: line perp to AB meet AB at M<br>$\therefore$ CM goes through the centre<br>BM = MA = 4 units<br>(line from centre perp to chord)<br>In $\triangle$ AOM: Let OM = x<br>$\therefore$ radius CO = 8 - x<br>$\therefore (8 - x)^2 = x^2 + 4^2$ (pythag)<br>16x = 48<br>x = 3<br>$\therefore$ radius is 5 units<br>Alternate:<br>Let the radius be r<br>In $\triangle$ AOM: OM = 8 - r<br>$\therefore r^2 = (8 - r)^2 + 4^2$ | BM = MA = 4 units<br>(line from centre perp to chord)<br>∴ radius CO = 8 - x<br>∴ $(8 - x)^2 = x^2 + 4^2$ (pythag)<br>x = 3<br>∴ radius is 5 units          |
|     | $\therefore 16r = 80$<br>Hence $r = 5$                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                             |

| (a) | In $\triangle ACG: \frac{AE}{EC} = \frac{AF}{FG}$ (line    one side of $\triangle$ )                                                            | AE AF                                                                                   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|     | $\frac{3p}{2p} = \frac{2k}{FG}$                                                                                                                 | $\overline{EC} = \overline{FG}$ (line    one side of $\Delta$ )                         |
|     | $\therefore FG = \frac{4}{3}k$                                                                                                                  | $\therefore FG = \frac{4}{3}k$                                                          |
|     | In $\triangle BFD$ : $\frac{BG}{GF} = \frac{BC}{CD}$ (line    one side of $\triangle$ )<br>$\frac{\frac{11}{3}k}{\frac{4}{6}k} = \frac{BC}{CD}$ | $\frac{\frac{11}{3}k}{\frac{4}{3}k} = \frac{BC}{CD}$<br>(line    one side of $\Delta$ ) |
|     | $\frac{3}{BC} = \frac{11}{4}$                                                                                                                   | $\frac{BC}{CD} = \frac{11}{4}$                                                          |

| (a)(1) | $\frac{\sin\theta.\cos 2\theta}{2\sin\theta\cos\theta} \div \left(\frac{\sin\theta}{\cos\theta} - \frac{\cos\theta}{\sin\theta}\right)$ $= \frac{\sin\theta.\cos 2\theta}{2\sin\theta\cos\theta} \div \left(\frac{\sin^2\theta - \cos^2\theta}{\sin\theta\cos\theta}\right)$ $= \frac{\sin\theta.\cos 2\theta}{2\sin\theta\cos\theta} \times \left(\frac{\sin\theta\cos\theta}{-\cos 2\theta}\right)$ $a f(\theta) = -\frac{1}{2}\sin\theta$                                                             | $2\sin\theta\cos\theta$ $\frac{\sin\theta}{\cos\theta}$ $\left(\frac{\sin^2\theta - \cos^2\theta}{\sin\theta\cos\theta}\right) \text{ for LCD}$ $-\cos2\theta$ $= -\frac{1}{2}\sin\theta$                                                              |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a)(2) | Values of $\theta \in [0^{\circ}; 360^{\circ}]$ for which the identity is<br>not valid:<br>tan $\theta$ is undefined for: $\{90^{\circ}; 270^{\circ}\}$<br>sin $2\theta = 0$ undefined for: $\{0^{\circ}; 180^{\circ}; 360^{\circ}\}$<br>tan $\theta - \frac{1}{\tan \theta} = 0$ undefined for:<br>$\{45^{\circ}; 135^{\circ}; 225^{\circ}; 315^{\circ}\}$                                                                                                                                              | $\{90^{\circ};270^{\circ}\}$<br>$sin2\theta = 0$<br>$\{0^{\circ};180^{\circ};360^{\circ}\}$<br>$tan\theta - \frac{1}{tan\theta} = 0$<br>$\{45^{\circ};135^{\circ};225^{\circ};315^{\circ}\}$                                                           |
| (b)    | $A\hat{D}C = 180^{\circ} - (\alpha + \beta) \text{ (int. } \angle \text{s of } \Delta)$ $\frac{AC}{\sin A\hat{D}C} = \frac{AD}{\sin \beta}  \text{(sine rule)}$ $\frac{120}{\sin [180^{\circ} - (\alpha + \beta)]} = \frac{AD}{\sin \beta}$ $\therefore AD = \frac{120 \sin \beta}{\sin (\alpha + \beta)}$ $In \ \Delta ABD: \ \tan \theta = \frac{BD}{AD}$ $BD = AD \tan \theta$ $\therefore BD = \frac{120 \sin \beta \cdot \tan \theta}{\sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta}$ | $A\hat{D}C = 180^{\circ} - (\alpha + \beta)$ $\frac{120}{\sin[180^{\circ} - (\alpha + \beta)]} = \frac{AD}{\sin\beta}$ $\therefore AD = \frac{120\sin\beta}{\sin(\alpha + \beta)}$ $In \ \Delta ABD: \ \tan\theta = \frac{BD}{AD}$ $BD = AD\tan\theta$ |

| (a) | $(x+4)^2 + (y-5)^2 = r^2$                              | $(x+4)^2 + (y-5)^2 = r^2$                     |
|-----|--------------------------------------------------------|-----------------------------------------------|
|     | $F\left(\frac{-4-2}{2};\frac{5-1}{2}\right)$           | $F\left(\frac{-4-2}{2};\frac{5-1}{2}\right)$  |
|     | $\therefore$ F(-3;2) sub. in eq of $\odot$             | $(-3+4)^2 + (2-5)^2 = r^2$                    |
|     | $(-3+4)^2 + (2-5)^2 = r^2$                             | $r^2 = 10$                                    |
|     | $r^2 = 10$                                             | $(x+4)^2+(y-5)^2=10$                          |
|     | Eq.: $(x+4)^2 + (y-5)^2 = 10$                          |                                               |
| (b) | $m_{AB} = -\frac{1}{2}$                                | $m_{AB} = -\frac{1}{2}$                       |
|     | $m_{\scriptscriptstyle BC}=2$                          | $m_{\scriptscriptstyle BC}=2$                 |
|     | Eq. BC: $y = 2x + c$ sub. (-10;3)                      | $\therefore c = 23$                           |
|     | $\therefore c = 23$                                    | $m_{12} = -3$                                 |
|     | Eq. BC: $y = 2x + 23$                                  | $\therefore c = -7$                           |
|     | $m_{AC} = -3$                                          |                                               |
|     | Eq. AC: $y = -3x + c$ sub. $(-2; -1)$                  | x = -6                                        |
|     | $\therefore c = -7$                                    | $\therefore y = 11$                           |
|     | Eq. AC: $y = -3x - 7$                                  | C(-6;11)                                      |
|     | For C: $-3x-7 = 2x+23$                                 |                                               |
|     | x = -6                                                 |                                               |
|     | $\therefore y = 11$<br>C(6:11)                         |                                               |
| (c) | D = (-0, 11)                                           | DE   CE (tan   rad)                           |
| (0) | $DE = \sqrt{10}$                                       | $CD = 2\sqrt{10}$                             |
|     | $CD = \sqrt{(-4+6)^2 + (5-11)^2}$                      | $CF^{2} - (2\sqrt{10})^{2} - (\sqrt{10})^{2}$ |
|     | $CD = \sqrt{(-4+0)^2 + (3-11)^2}$                      | CE = (2410) - (410)                           |
|     | $CD = 2\sqrt{10}$                                      | $CE = \sqrt{30}$                              |
|     | $CE^{2} = (2\sqrt{10})^{2} - (\sqrt{10})^{2}$ (pythag) |                                               |
|     | $CE = \sqrt{30}$                                       |                                               |

| (-)    | 2 2                                                                  | <u> </u>                                              |
|--------|----------------------------------------------------------------------|-------------------------------------------------------|
| (a)    | $(x-7)^{2} + (y-1)^{2} = -46 + 49 + 1$                               | $(x-7)^2 + (y-1)^2 =$                                 |
|        | $(x-7)^{2} + (y-1)^{2} = 4$                                          | -46+49+1                                              |
|        | Centre: (7;1)                                                        | Centre: (7;1)                                         |
|        | Radius: 2 units                                                      | Radius: 2 units                                       |
| (b)    | $m_{PA} = -\sqrt{3}$                                                 | $m_{_{PA}} = -\sqrt{3}$                               |
|        | $\therefore m_{\rm tan} = \frac{1}{\sqrt{3}}$                        | $\therefore m_{\rm tan} = \frac{1}{\sqrt{3}}$         |
|        | $y = \frac{1}{\sqrt{2}}x + c$ sub (6; $\sqrt{3} + 1$ )               | $c=1-\sqrt{3}$                                        |
|        | $c = 1 - \sqrt{3}$                                                   | $y = \frac{1}{\sqrt{3}}x + 1 - \sqrt{3}$              |
|        | $y = \frac{1}{\sqrt{3}}x + 1 - \sqrt{3}$                             |                                                       |
| (c)(1) | $(x-7)^{2}+(y-1)^{2}=4$                                              | LHS = $(x-7)^{2} + (y-1)^{2}$                         |
|        | LHS = $(x-7)^2 + (y-1)^2$ sub $(8; -\sqrt{3}+1)$                     | sub $(8; -\sqrt{3}+1)$                                |
|        | LHS = $(8-7)^{2} + (-\sqrt{3}+1-1)^{2}$                              |                                                       |
|        | LHS = 4                                                              | LHS = $(8-7)^2 + (-\sqrt{3}+1-1)^2$                   |
|        | $LHS = RHS$ $\therefore$ point lies on the circle                    | LHS = 4                                               |
|        |                                                                      | $\therefore$ point lies on the circle                 |
| (c)(2) | Dist AB $-\sqrt{(8-6)^2 + (-\sqrt{3}+1-\sqrt{3}-1)^2}$               | Dist AB =                                             |
|        | Dist AB = $\sqrt{(0-0)^{-1}(-\sqrt{3}+1-\sqrt{3}-1)}$<br>Dist AB = 4 | $\sqrt{(8-6)^2 + (-\sqrt{3}+1-\sqrt{3}-1)^2}$         |
|        | This is twice the redius, therefore AD is a                          | Dist AB = 4                                           |
|        | diameter.                                                            | This is twice the radius, therefore AB is a diameter. |
| 1      | 1                                                                    |                                                       |

| (2) |                                                                                                                                                                                                                                  | ^ <b>1</b>                                                                                                                                          |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) | $\Delta BEM \equiv \Delta CEM$ (R;H;S)                                                                                                                                                                                           | $\tan \hat{E}_1 = \frac{4}{6}$                                                                                                                      |
|     | $\therefore$ BM = MC = 4 cm                                                                                                                                                                                                      | $\hat{E}_1 = 33,7^{\circ}$                                                                                                                          |
|     | $\tan E_1 = \frac{4}{6}$                                                                                                                                                                                                         | ∴BÊC=67,4°                                                                                                                                          |
|     | $\hat{E}_1 = 33,7^{\circ}$                                                                                                                                                                                                       |                                                                                                                                                     |
|     | $\therefore \hat{BEC} = 67,4^{\circ}$<br>Snow will build up on the roof.                                                                                                                                                         |                                                                                                                                                     |
|     | Alternate:<br>In $\triangle BCE$ : $BE^{2} = 4^{2} + 6^{2}$ (pythag)<br>$BE = 2\sqrt{13}$<br>Cosine Rule:<br>$\hat{A} = \cos^{-1} \left( \frac{8^{2} - (2\sqrt{13})^{2} - (2\sqrt{13})^{2}}{-2(2\sqrt{13})(2\sqrt{13})} \right)$ |                                                                                                                                                     |
|     | = 67,4°                                                                                                                                                                                                                          |                                                                                                                                                     |
| (b) | DM <sup>2</sup> = 12 <sup>2</sup> + 4 <sup>2</sup> (pythag)<br>DM = 4 $\sqrt{10}$<br>In $\Delta$ EDM: DE <sup>2</sup> = 6 <sup>2</sup> + $(4\sqrt{10})^2$<br>DE = 14 cm<br>sinDÊC = $\frac{12}{14}$<br>DÊC = 59°                 | $DM = 4\sqrt{10}$<br>$\Delta EDM: DE^{2} = 6^{2} + (4\sqrt{10})^{2}$<br>DE = 14  cm<br>$\sin D\hat{E}C = \frac{12}{14}$<br>$D\hat{E}C = 59^{\circ}$ |
|     | Alternate:<br>In $\triangle$ MEC: CE <sup>2</sup> = 4 <sup>2</sup> + 6 <sup>2</sup> (pythag)<br>CE = 2 $\sqrt{13}$                                                                                                               |                                                                                                                                                     |
|     | DC = 12 cm<br>DE <sup>2</sup> = 12 <sup>2</sup> + $(2\sqrt{13})^2$<br>DE = 14 cm<br>sinD $\hat{E}C = \frac{12}{14}$<br>D $\hat{E}C = 59^\circ$                                                                                   |                                                                                                                                                     |

| (a) | B(x;-2x)                                                                                        | B(x,-2x)                                                                                  |
|-----|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|     | Dist OB = $\sqrt{(x-0)^2 + (-2x-0)^2}$                                                          | $\sqrt{\left(x-0\right)^2 + \left(-2x-0\right)^2} = \sqrt{125}$                           |
|     | $\sqrt{(x-0)^2 + (-2x-0)^2} = \sqrt{125}$                                                       | $x = \pm 5$                                                                               |
|     | $5x^2 = 125$                                                                                    |                                                                                           |
|     | $x = \pm 5$<br>B(-5; v) sub x = -5 in f(x)                                                      |                                                                                           |
|     | ∴B(-5;10)                                                                                       |                                                                                           |
| (b) | $m_{OB} = -2$                                                                                   | $m_{\rm OB} = -2$                                                                         |
|     | $\therefore m_{BE} = \frac{1}{2}$                                                               | $\therefore m_{BE} = \frac{1}{2}$                                                         |
|     | Eq BE: $y = \frac{1}{2}x + c$ sub (-5;10)                                                       | $c=\frac{25}{2}$                                                                          |
|     | $c=\frac{25}{2}$                                                                                | 25                                                                                        |
|     | $\therefore E\left(0;12\frac{1}{2}\right)$                                                      | $\frac{1}{8}$ 25                                                                          |
|     |                                                                                                 | $\therefore y = \frac{23}{4}$                                                             |
|     | $m_{EC} = -2$ (// lines)                                                                        | 25√5                                                                                      |
|     | Eq EC: $y = -2x + \frac{25}{2}$                                                                 | Dist EC = $\frac{1000}{8}$                                                                |
|     | For C: $-2x + \frac{25}{2} = 2x$                                                                | Dist BE = $\frac{5\sqrt{5}}{2}$                                                           |
|     | $x = \frac{25}{9}$                                                                              |                                                                                           |
|     | $\therefore y = \frac{25}{4}$                                                                   | $=\frac{1}{2}\times\left(\sqrt{125}+\frac{23\sqrt{3}}{8}\right)\times\frac{3\sqrt{3}}{2}$ |
|     | $C\left(\frac{25}{25};\frac{25}{25}\right)$                                                     | ≈ 50,8 units²                                                                             |
|     |                                                                                                 |                                                                                           |
|     | Dist EC = $\sqrt{\left(\frac{25}{8} - 0\right)^2 + \left(\frac{25}{4} - \frac{25}{2}\right)^2}$ |                                                                                           |
|     | Dist EC = $\frac{25\sqrt{5}}{8}$                                                                |                                                                                           |
|     | Dist BE = $\sqrt{(-5-0)^2 + (10-\frac{25}{2})^2}$                                               |                                                                                           |
|     | Dist BE = $\frac{5\sqrt{5}}{2}$                                                                 |                                                                                           |
|     |                                                                                                 |                                                                                           |

| Area of Trap = $\frac{1}{2} \times \left( \sqrt{125} + \frac{25\sqrt{5}}{8} \right) \times \frac{5\sqrt{5}}{2}$                                                                                                               |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Area of Trap = $\frac{1625}{32}$                                                                                                                                                                                              |  |
| $\approx 50,8 \text{ units}^2$                                                                                                                                                                                                |  |
| Alternate:                                                                                                                                                                                                                    |  |
| In $\triangle BOE$ :<br>$m_{OB} = -2$<br>$\therefore \tan \theta = 2$ $\therefore \theta = 63, 4^{\circ}$<br>$\therefore BOE = 90^{\circ} - 63, 4^{\circ}$<br>$\therefore BOE = 26, 6^{\circ}$                                |  |
| Eq BE: $y = \frac{1}{2}x + c$ sub (-5;10)<br>$c = \frac{25}{2}$<br>$\therefore E\left(0;12\frac{1}{2}\right)$                                                                                                                 |  |
| $\therefore EO = 12\frac{1}{2} \text{ units and OB} = \sqrt{125}$ Area $\triangle BOE = \frac{1}{2} \left( 12\frac{1}{2} \right) \left( \sqrt{125} \right) \sin 26, 6^{\circ}$ Area $\triangle BOE = 31,2881 \text{ units}^2$ |  |
| In ∆EOC: CÉO=26,6° (alt. ∠s, BO//EC)                                                                                                                                                                                          |  |
| $m_{EC} = -2$ (// lines)<br>Eq EC: $y = -2x + \frac{25}{2}$                                                                                                                                                                   |  |
| For C: $-2x + \frac{25}{2} = 2x$<br>$x = \frac{25}{8}$<br>$\therefore y = \frac{25}{4}$<br>$C\left(\frac{25}{8}; \frac{25}{4}\right)$                                                                                         |  |
|                                                                                                                                                                                                                               |  |

| Dist EC = $\sqrt{\left(\frac{25}{8} - 0\right)^2 + \left(\frac{25}{4} - \frac{25}{2}\right)^2}$<br>Dist EC = $\frac{25\sqrt{5}}{8}$              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Area $\Delta EOC = \frac{1}{2} \left( 12\frac{1}{2} \right) \left( \frac{25\sqrt{5}}{8} \right) \sin 26,6^{\circ}$<br>Area $\Delta EOC = 19,555$ |  |
| Area of Trap = 31,2881+19,555 $\approx 50,8 \text{ units}^2$                                                                                     |  |

# Total: 150 mark